Tune¶
- class nimble.Tune(values=None, start=None, end=None, change=None, changeType=None)¶
Triggers hyperparameter optimization to occur during training.
Provide or generate the possible argument values to use during the hyperparameter optimization process (defined by a
Tuningobject) and the best argument will be used to train the learner. A list of predetermined values can be passed as thevaluesparameter or a range of values can be constructed using thestart,end,changeandchangeTypeparameters. Onlyendis required in this case, the other parameters will be assigned default values if not explicitly set (see below).- Parameters:
values (list) – A list of argument values to use for tuning. Either this or
endmust not be None.start (int, float) – The inclusive start value of the values in a range. Default to 0 and only applies when
endis not None.end (int, float) – The inclusive end value of the values in a range. Either this or
valuesmust not be None.change (int, float) – The amount by which to changeType the data in the range. The
changeTypeparameter will dictate whether this uses addition or multiplication. Defaults to 1 and only applies when whenendis not None.changeType (str) – Either ‘add’ or ‘multiply’ to indicate how the
changewill be used to generate the range. Defaults to ‘add’ and only applies whenendis not None.
See also
Keywords
cross-validation, parameter, argument, hyperparameters, tuning, optimization, cross validate, learn, hyper parameters, hyperparameters, choose, grid search, GridSearchCV