Tune¶
- class nimble.Tune(values=None, start=None, end=None, change=None, changeType=None)¶
Triggers hyperparameter optimization to occur during training.
Provide or generate the possible argument values to use during the hyperparameter optimization process (defined by a
Tuning
object) and the best argument will be used to train the learner. A list of predetermined values can be passed as thevalues
parameter or a range of values can be constructed using thestart
,end
,change
andchangeType
parameters. Onlyend
is required in this case, the other parameters will be assigned default values if not explicitly set (see below).- Parameters:
values (list) – A list of argument values to use for tuning. Either this or
end
must not be None.start (int, float) – The inclusive start value of the values in a range. Default to 0 and only applies when
end
is not None.end (int, float) – The inclusive end value of the values in a range. Either this or
values
must not be None.change (int, float) – The amount by which to changeType the data in the range. The
changeType
parameter will dictate whether this uses addition or multiplication. Defaults to 1 and only applies when whenend
is not None.changeType (str) – Either ‘add’ or ‘multiply’ to indicate how the
change
will be used to generate the range. Defaults to ‘add’ and only applies whenend
is not None.
See also
Keywords
cross-validation, parameter, argument, hyperparameters, tuning, optimization, cross validate, learn, hyper parameters, hyperparameters, choose, grid search, GridSearchCV