Features.replace

Features.replace(data, features=None, *, useLog=None, **dataKwds)

Replace the data in one or more of the features in this object.

If features=None, the data must be a nimble data object with matching featureNames, matching featureNames must be specified as a dataKwds argument or the data must replace all features. Otherwise, the shape of the data object must align with the features parameter. Index values in features will take priority over matching featureNames.

Parameters:
  • data – The object containing the data to use as a replacement. This can be any source accepted by nimble.data.

  • features (identifier, list, None) – The feature (name or index) or list of features to replace with the provided data.

  • useLog (bool, None) – Local control for whether to send object creation to the logger. If None (default), use the value as specified in the “logger” “enabledByDefault” configuration option. If True, send to the logger regardless of the global option. If False, do NOT send to the logger, regardless of the global option.

  • dataKwds – Any keyword arguments accepted by nimble.data to use to construct a nimble data object from data. These only apply when data is not already a nimble data object.

Examples

>>> obj = nimble.zeros(3, 3, featureNames=['a', 'b', 'c'])
>>> newFt = nimble.ones(3, 1, featureNames=['b'])
>>> obj.features.replace(newFt, features='b')
>>> obj
<Matrix 3pt x 3ft
     a  b  c
   ┌────────
 0 │ 0  1  0
 1 │ 0  1  0
 2 │ 0  1  0
>
>>> obj = nimble.zeros(3, 4, returnType='Sparse')
>>> replacement = [[1, 9], [2, 8], [3, 7]]
>>> obj.features.replace(replacement, [1, 2])
>>> obj
<Sparse 3pt x 4ft
     0  1  2  3
   ┌───────────
 0 │ 0  1  9  0
 1 │ 0  2  8  0
 2 │ 0  3  7  0
>
>>> obj = nimble.zeros(3, 3, featureNames=['a', 'b', 'c'],
...                    returnType="DataFrame")
>>> obj.features.replace(['Y', 'N', 'Y'], featureNames=['b'])
>>> obj
<DataFrame 3pt x 3ft
     a  b  c
   ┌────────
 0 │ 0  Y  0
 1 │ 0  N  0
 2 │ 0  Y  0
>

Keywords: change, substitute, alter, transform